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SUMMARY

This paper is concerned with the development of formulas of a recursive nature

from a certain special type determinant. These formulas lead directly to computational

routines that are effective in the evaluation of such determinants. Such computational

routines are also applicable to a wide variety of recursion formulas, obtained by special-

ization of the parameters involved.

From the expansion of this type determinant, a recursion formula is obtained and

later simplified to the form

= = -l, bj+ t =R o l, an+t,n ,J -aj+l,j

D n =b21 b32 ... bn, n_lR n

-1 i

Ri = bi+l, i _ ai_j+l,i
j=l

This set of formulas is very efficient for computational purposes as discussed in the

paper.

I. INTRODUCTION

This paper grew out of an investigation of an eigenvalue problem concerned with

the Schrodinger wave equation using the Yukawa potential. In that investigation, a



recursion formula for the coefficients of the power series solution of the differential

equation was used as a recursion formula and to deduce a determinant that determined

the coefficients. It was discovered that routines for the effective evaluation of such types
of determinants could be deduced as a generalization of that work and that these routines

were more effective in precision and in time than the more general routines now avail-

able. These routines may be used either for evaluations of these special type determi-

nants or of quite general recursion relations.

II. MATHEMATICAL TREATMENT

The type determinant treated in this paper is the following

Dn

all at2 al3 o . . aln

a21 a22 a23 • . . a2 n

O a32 a33 . . . a3n

O O O ann

in which a i. = O for i > j+l. By a straightforward expansion by minors,
recursion _ormula is obtained.

i

Di = aiiDi_i + _ (-1) j+l
j=2 ai'i-lai-l'i-2" " " ai-j+2'i-j+lai-j+l' iDi-j'

the following

(l)

where D O = 1. This formula will generate D n in n steps by taking in turn the values t,

2, .... n for i in equation 1.

i-j+lDj = .R. forFormula 1 can be greatly simplified by setting (-1) a21 ... aj+t,j ]

j=t, 2, ..., n. This results in the formula

i

°R°-at+l, iRi _ ai-j+l, 1 l-j,
j=l

(2)

where R o
that

= I and for the last step in the process an+l, n = -1.

D n= (-1) na21a32 • . .an, n_lR n •

Then it easily follows

(3)



By changing the sign of aj+l, j with the substitution bj+l, j = -aj+l, J , we obtain the

following set of formulas that are complete

K o l, an+l, n bj+l, j -aj+l, j

Dn = b21 ba2 • • • bn, n-i Rn

_l i
R. _ R.

1 = bi+l i ai-j+i,i 1-j
' j=l

(4)

It has been assumed in obtaining equations 2 and 4 that ai+i, i + O for each i as is
evidenced by the last equation in 4.

If bi+i, i = O, then set

i

D. = b2i b32. b. _ .R.
1 "" 1,i-1 ai-j+l,1 1-j

j::l°_

as is done when i = n. Proceed to calculate the remaining principal minor D' . as is
ma v - i+l

done for D n. Then D n -- D i Di+i.' This process may be repeated as nj _mes as ze-

roes occur immediately below the main diagonal.

If zeroes occur (or are suspected to occur), another procedure would be to base

the calculation on equation l, which is correct whether zeroes occur or not. In general,

equation 1 leads to more computational time and effort than equations 4.

It is evident from equation I and equations 4 that these formulas cover a wide

variety of recur_lun ,elations and also are applicable in the solution of "almost diagonal"

determinants. It is also true that these cases occur quite frequently in practice in

physics, engineering, and other applied mathematics fields. These recursion relations

might be termed "two dimensional." For example, if we set a i.] = ai+l,j+ 1 = a. for i > j1

and bi+l, i = bi' we obtain the "one dimensional" recursion formula

b.R.= + a. R. a..=C. ,
1 1 Ci-I Ri-i 1-j-I 1-j-l' JJ l (5)

j=t

which was associated with the Schrodinger - Yukawa differential equation mentioned
above.
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III. NUMERICAL CRITIQUE

In approximating by evaluation the real roots of polynomials Pi, given by the
determinant associatedwith relation 5 in the case just mentioned, the IBM 7090required
19 minutes for 645 evaluations of P40by the available routine. Sincethis technique was
practically prohibitive, other procedures were sougbt• A procedure was devised based
on relation 5 (actually programmed with the cooperation of Mr• Audie Anderson of the
General Electric Companystaff). This procedure enabledthe 7090to make 645 evalu-
ations (the same number) in 4. 2 minutes, not for just the case i = 40, but for all cases
i = 1, 2, .... 75 (645 evaluations for each suchcase)• This is convincing evidenceof
the importance of suchprocedures•

It is of interest to compare the procedure outlined by equations 4 with the
well-known process of replacing the ai+l, i by zeroes or diagonalizing the determinant•
To make clear the comparison, it is informative to write out a few steps for each method
as is donebelow.

Process Basedon Equation 4
-1

RI = b21 ali

-i

R 2 = b32

R 3 = b43 t

(a22 _ + a12 )

b21 _ +
a22 521 a12

(a33 b32
+ al 3)

+ a23 b21

Diagonal Process

d 1 = all

d2 = a22 + b-m- a12
all

b22
d 3 = a:_ 3 + (

a22 +
all

)(a23 + b-21- a13 )
all

A close analysis of the two reveals several interesting facts_ The two procedures

are the reciprocals of one another in a certain evident sense• The procedure in the case

of formula 4 calls for i multiplications and i-1 additions of known quantities in order to

obtain R i. Here we count division as a multiplication by the reciprocal number as will
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be done in both cases. The procedure in the case of the diagonal process calls for

n-i+2 multiplications and n-i+l additions of known quantities in order to obtain di. At

the end of the procedure, in each case, there are n-I multiplications of known quantities

in order to obtain Dn. In the case of formula 4, obtaining Rn calls for n-i multiplica-

tions instead of the expected n because bn+l,n = l. On the other hand, the diagonal pro-

cess only proceeds from i--2 to i-n. Taking all of these facts into account it is seen that

precisely the same number of operations are involved in the two procedures, namely

! (n-l)(n+4) multiplications and _n(n-l) additions. On this basis, we have "dead
2

heat. "

However, there is a difference between the two that might work against the dia-

gonal process with respect to round-off error propagation. In the diagonal procedure,

the divisors are rounded-off numbers; whereas, in the procedure of formula 4, the divi-

dends are rounded-off numbers while the divisors are given numbers. Such a difference

could be decisive in favor of the procedure of formula 4. Tests are planned to determine

this difference on the IBM 7090 with determinants that are not too difficult to evaluate

precisely.

IV. CONCLUDING REMARKS

From the simplicity of formulas i and 4, it is evident that programs can be

written that are relatively simple because of the recursive properties of those formulas.

These programs are being written and will be made a part of the library of the MSFC

Computation Division.

Another point of interest and importance is illustrated by the difference in for-

mulas 1 and 4. The two are mathematically equivalent as demonstrated above, but the

difference in the number of multiplications is significant and, in general, formula 4

would have a decided advantage in machine time. This illustrates the great importance

of theoretical analyses of the machine routines that are to be used in practice.
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